Tag Archives: Microbiome

Inflammation and Body Weight

Inflammation plays a critical role in determining how we digest food, and it’s only now starting to reveal itself.

it is becoming clear that some people’s guts are simply more efficient than others’ at extracting calories from food. When two people eat the same 3,000-calorie pizza, for example, their bodies absorb different amounts of energy. And those calorie-converting abilities can change over a person’s lifetime with age and other variables.

The question is, why? And is it possible to make changes, if a person wanted to?

If so, the solution will involve the trillions of microbes in our intestines and how they work in concert with another variable that’s just beginning to get attention. The immune system determines levels of inflammation in the gut that are constantly shaping the way we digest food—how many calories get absorbed, and how many nutrients simply pass through.

The relationship between microbes and weight gain has long been overlooked in humans, but people have known about similar effects in animals for decades.

. . .

In 2006, Jeffrey Gordon, a biologist at Washington University in St. Louis, reported that the microbiomes of obese mice had something in common: Compared with their lean counterparts, the heavier mice had fewer Bacteroides and more Firmicutes species in their guts. What’s more, biochemical analyses showed that this ratio made the microbes better at “energy harvest”—essentially, extracting calories from food and passing it into the body. That is, even when mice ate the same amount and type of food, the bacterial populations meant that some developed metabolic problems, while others didn’t. Similar bacterial patterns have since been confirmed in obese humans.

What’s more, Gordon found, the microbiome associated with obesity is transferable. In 2013, his lab took gut bacteria from pairs of human twins in which only one twin was obese, then fed the samples to mice. The mice given bacteria from the obese humans quickly gained weight. The others did not.

The Fundamental Link Between Body Weight and the Immune System

 


Lora Hooper (UT Southwestern) 1: Mammalian gut microbiota: Mammals and their symbiotic gut microbes

 

Microbiome

Scientific discoveries in recent years suggest that some serious conditions could be cured by adding “good” bacteria to your digestive tract. Now several companies are racing to develop drugs that do so.

It’s a jungle in there: massive populations of microbes, immune cells, and cells of the gut tissue are interacting and exchanging countless chemical and physical signals. Disruptions to this complex ecosystem, often called the microbiome, have been linked not only to gastrointestinal problems but also to metabolic, immunological, and even neurological disorders.

One such problem, which occurs when a very common species of bacteria, Clostridium difficile, colonizes the gut and becomes too abundant, can be cured by adding good bacteria to the digestive tract—but the method for doing so requires a transplant of another person’s feces, and the reasons it works are not well understood. The next generation of microbiome medicines will instead be “real drugs” that are “easy to take, clean, and safe,” says Roger Pomerantz, CEO of Seres Therapeutics.

Companies Aim to Make Drugs from Bacteria That Live in the Gut

Fermented food is good for your microbiome